Design of Continuous UHPFRC Mixing Machine
Joel Bay, Robert Buckalew, Alex Maliakkel, Steven Rimka, Kevin Spohrer, Jonathan Yoder
Bailey Tool and Manufacturing
Spring 2018

Background

- DCS was tasked with designing and prototyping a first-to-market continuous ultra-high performance fiber reinforced concrete (UHPFRC) mixing and discharging machine

Objectives

- Design and prototype a mobile continuous UHPFRC mixer
- Output: 10-50 cubic yards of UHPFRC per hour
- The UHPFRC mixer needs to be cleanable
- The UHPFRC needs to be serviceable

System Diagram

Prototype

Conclusions

- Our team was able to achieve functionality of our UHPFRC mixer.
- High shear heads properly sheared material that flowed through, but created significant resistance to flow resulting in a decreased overall volumetric flow rate.
- Recommended future work:
 - More thorough and time intensive testing of different high shear head designs to achieve an increased output flow rate.
 - Development of a complex fiber addition mechanism for a fully automated process.
 - Increase robustness of liquids addition process.

Subsection Detailed Views

- Low shear chamber
- High shear chamber
- Fiber addition chamber
- Liquids addition

Questions? Email Joel.Bay@utdallas.edu for more information

Special Thanks to Dr. James Hilkert, Dr. Todd Griffith, Ron Laywell, Marvin Kessler and John Butlasses