Around 4.7 million individuals in the US are living with Alzheimer’s Disease (AD). Recent findings suggest central auditory dysfunction may act as early indicators for developing stages of AD. We have developed a wireless, portable system for soundscape monitoring and capturing brain activity (EEG). The system consists of three stages: 1) signal acquisition, 2) data transfer and storage 3) digital signal processing. Our system is able to synchronize the EEG and recorded sound with respect to time, allowing us to monitor the relationship of a patient’s cognitive perception to various acoustic events.

Features:
- Wireless
- Fast Data Transfer
- Secure Data Encryption
- Extensive Battery Life
- Comfortable
- Lightweight
- Stylish

Hat: A custom-built hat that serves to house our electrical components: Raspberry pi 3B+, internal wiring, signal acquisition circuit and EEG cap. Manufactured by Classic Caps

EEG CAP: Handmade EEG cap that firmly secures flex sensors (dry electrodes); includes adjustable chin strap

ADS1299: Texas Instruments’ analog front-end chip acquires the brain activity; located within back pocket of the hat

In-Ear Monitors: The monitors provide the ability to measure the surrounding acoustic environment

Battery: Small and light. Rechargeable battery provides portability and efficient power management to the system

Corporate/Technical Mentors
- Chin-Tuan Tan, PhD
- Soudhe Khoubrouy, PhD

Neuropsychiatry Team
- Danny Lam
- Daniel Clarke
- Mohammad Tafsi
- Joseph Martinez
- Jad Jabry

Engineering Directors
- Todd Polk, PhD
- Robert Hart, PhD