Background Information

Plantarflexion/Dorsiflexion
- Plantarflexion occurs during heel strike. The foot makes a greater than 90° angle with the lower leg.
- Dorsiflexion occurs during midstance. The foot makes a less than 90° angle with the lower leg.

Inversion/Eversion
- Twisting of the ankle from side to side
- This twisting of the ankle is usually from 0 to 5 degrees
- During inversion the foot and ankle rotate inwards or towards the center of the body

Project Background
- Post stroke patients lose functionality in their foot and ankle
- Ankle foot orthosis (AFO) are used to assist clinicians in rehabilitation process
- Current AFO limits patient gait recovery
- Only allows motion in one plane
- Limits calf extension
- Patient must use calf muscles to recover strength.

Objectives
- Help patients recover their natural gait through neural plasticity
- Allow patients to use and retrain their calf muscles
- Make AFO easy to use for both patients and clinicians
- Have an AFO that patients will trust

Design Requirements
- 0-5° inversion & eversion
- 0-15° plantarflexion & dorsiflexion
- Provide resistance through dorsiflexion
- Hard stop at 15°
- Adjustable soft stop increases load without deflection
- Sustains body forces of a 300lb person
- Keep cost similar or below current design

Design Overview

Design Solution

Plantarflexion/Dorsiflexion
- Our design guides the patient through the gait cycle with the usage of springs inside the joint.
- The two front springs create a soft stop to help the patient trust the orthotic.

Inversion/Eversion
- A spring suspension system along with a hinge and sliding parts allow for the patient to invert/evert their ankles.
- Springs push ankle back to correct position after movement

Conclusion

While keeping all of the functions of the DAAJ ankle orthotic, we were able to add:
- Additional range of motion to ankle dorsiflexion and plantarflexion.
- A soft and hard stop during plantar flexion to allow the patient to trust the orthotic and guide them through the gait cycle.
- Five degrees of eversion and inversion to allow the patient to rotate their ankle while walking.
- High strength aluminum to the some of the components of the joint, keeping the weight similar to the current AFO as well as the cost of production

Ethics

It has always been the highest priority in our work to ensure the safety and well being of those who will be using this AFO.

Acknowledgements

Special thank you to Dr. Karen McCain, Dr. Robert Gregg, Staci Shearin, Toby Elery, Dr. Robert Hart, Gene Woten, Mark Powell, UTSouthwestern Medical Center.