Shell Eco-Marathon Car Body
Jonathon Brewer, Damarion Amie, Evan Fowler,
Andre Kokojan, Thomas Nemariam, Albert Wang
UTD ASME
Spring 2017

Project Motivation

• The ASME student chapter at UTD competes in Shell-Eco Marathon competitions.
• A new car body is needed to meet sponsor specifications.
• Streamline Solution contracted to design and manufacture new car body through UTDdesign.

Project Goals

• Achieve design constraints set by Shell and UTD ASME.
• Design body that balances manufacturability, weight, and aerodynamics.
• Manufacture a prototype car body exhibiting low weight, low coefficient of drag, and in compliance with all constraints.

Process

Design

• Designed to meet physical constraints set by Shell Eco-Marathon and UTD ASME, with manufacturability forefront in mind
• Structural material selection:

<table>
<thead>
<tr>
<th>Fiberglass</th>
<th>Carbon Fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>Black</td>
</tr>
<tr>
<td>570 strength/weight</td>
<td>1000 strength/weight</td>
</tr>
<tr>
<td>2.7 g/cc density</td>
<td>1.5 g/cc density</td>
</tr>
<tr>
<td>Fiberglass cost to Carbon Fiber cost: 1:3.3</td>
<td></td>
</tr>
</tbody>
</table>

Tooling/Layup

• Made negative molds from high density foam, foam cut using 3-axis milling machine.
• Sand and Buffed molds to smooth voids.
• Coated molds with Duratec primer to make the mold surface smooth.
• Used parting wax for easy release.
• Laid up carbon fiber and foam composite in negative mold and vacuum bagged for 8-12 hours.
• Released layup pieces for later joining.

Fabrication

• Used epoxy to join panels together.
• Used epoxy-microballoon mixture as filler to smooth inconsistencies, iteratively sanding and re-applying.
• Manufactured and installed flanges made from fiberglass for structural joins, or aluminum flanges with rivet nuts for removable segments.
• Cut and installed Lexan windows with rubber gasket.
• Mounted and wired electrical components for ASME electrical system.

Final Product

With the prototype Manufactured, UTD will have a superior car body that is:
• Up to 50 % reduction in weight
• Computationally lower in drag.
• Aesthetically pleasing shape.
• Production quality.
• Ready to enter into the Shell Eco-Marathon UrbanDesign Competition occurring April 17-20, 2017.
Additionally, complete CAD models and layup molds for future use will be provided.

Acknowledgements

The team would like to give a very special thank you to...
• Jessie Lowery
• Dr. Dani Fadda
• Dr. Robert Hart
• UTD ASME
• Mark Calder
• UTDesign
• Gene Woten
• Nancy Finch
• Nancy Scroggins
• DUNA-Group
This project would not have been possible without your guidance and support throughout the year!